10 research outputs found

    Entanglement in single-shot quantum channel discrimination

    Get PDF
    Single-shot quantum channel discrimination is the fundamental task of determining, given only a single use, which of two known quantum channels is acting on a system. In this thesis we investigate the well-known phenomenon that entanglement to an auxiliary system can provide an advantage in this task. In particular, we consider the questions: (1) How much entanglement is in general necessary to achieve an optimal discrimination strategy? (2) What is the maximal advantage provided by entanglement? Given a linear map Ψ : L(Cn) → L(Cm), its multiplicity maps are defined as the family of linear maps Ψ ⊗ 1L(Ck) : L(Cn ⊗ Ck) → L(Cm ⊗ Ck), where 1L(Ck) is the identity on L(Ck). Due to the Holevo-Helstrom theorem, the optimal performance using an auxiliary system of dimension k is quantified in terms of the norm of Ψ⊗1L(Ck), where Ψ is a linear map that depends on the parameters of the discrimination problem. Hence, the advantage provided by entanglement is represented in the growth of the norm of Ψ ⊗ 1L(Ck ) with k, a classic phenomenon in the theory of operator algebras. We formalize question (1) by investigating, relative to the input and output dimensions of the channels to be discriminated, how large of an auxiliary system is necessary to achieve an optimal strategy. Mathematically, this is connected to when the norm of Ψ ⊗ 1L(Ck) stops growing with k. It is well- known that an auxiliary system of dimension equal to the input is always sufficient to achieve an optimal strategy, and that this is sometimes necessary when the output dimension is at least as large as the input. We prove that, even when the output dimension is arbitrarily small compared to the input, it is still sometimes necessary to use an auxiliary system as large as the input to achieve an optimal strategy. For question (2), we investigate, with respect to a fixed input dimension, how large the gap between the optimal performances with and without entanglement can be. Mathematically, this is quantified by the rate of growth of the norm of Ψ ⊗ 1L(Ck ) in k. It is known that matrix transposition has the fastest possible growth, and we prove that it is essentially the unique linear map with this property. We use this to prove that a discrimination problem defined in terms of the Werner-Holevo channels is essentially the unique game satisfying a norm relation that states that the game can be won with certainty using entanglement, but is hard to win without entanglement. Along the way, we prove characterizations of the structure of maximal entanglement, as measured according to the entanglement negativity, as well as relative to a large class of entanglement measures. We also give various characterizations of complete trace-norm isometries, and reversible quantum channels

    Honest Approximations to Realistic Fault Models and Their Applications to Efficient Simulation of Quantum Error Correction

    Get PDF
    Understanding the performance of realistic noisy encoded circuits is an important task for the development of large-scale practical quantum computers. Specifically, the development of proposals for quantum computation must be well informed by both the qualities of the low-level physical system of choice, and the properties of the high-level quantum error correction and fault-tolerance schemes. Gaining insight into how a particular computation will play out on a physical system is in general a difficult problem, as the classical simulation of arbitrary noisy quantum circuits is inefficient. Nevertheless, important classes of noisy circuits can be simulated efficiently. Such simulations have led to numerical estimates of threshold errors rates and resource estimates in topological codes subject to efficiently simulable error models. This thesis describes and analyzes a method that my collaborators and I have introduced for leveraging efficient simulation techniques to understand the performance of large quantum processors that are subject to errors lying outside of the efficient simulation algorithm's applicability. The idea is to approximate an arbitrary gate error with an error from the efficiently simulable set in a way that ``honestly'' represents the original error's ability to preserve or distort quantum information. After introducing and analyzing the individual gate approximation method, its utility as a means for estimating circuit performance is studied. In particular, the method is tested within the use-case for which it was originally conceived; understanding the performance of a hypothetical physical implementation of a quantum error-correction protocol. It is found that the method performs exactly as desired in all cases. That is, the circuits composed of the approximated error models honestly represent the circuits composed of the errors derived from the physical models

    Tractable Simulation of Error Correction with Honest Approximations to Realistic Fault Models

    Full text link
    In previous work, we proposed a method for leveraging efficient classical simulation algorithms to aid in the analysis of large-scale fault tolerant circuits implemented on hypothetical quantum information processors. Here, we extend those results by numerically studying the efficacy of this proposal as a tool for understanding the performance of an error-correction gadget implemented with fault models derived from physical simulations. Our approach is to approximate the arbitrary error maps that arise from realistic physical models with errors that are amenable to a particular classical simulation algorithm in an "honest" way; that is, such that we do not underestimate the faults introduced by our physical models. In all cases, our approximations provide an "honest representation" of the performance of the circuit composed of the original errors. This numerical evidence supports the use of our method as a way to understand the feasibility of an implementation of quantum information processing given a characterization of the underlying physical processes in experimentally accessible examples.Comment: 34 pages, 9 tables, 4 figure

    Modeling quantum noise for efficient testing of fault-tolerant circuits

    Full text link
    Understanding fault-tolerant properties of quantum circuits is important for the design of large-scale quantum information processors. In particular, simulating properties of encoded circuits is a crucial tool for investigating the relationships between the noise model, encoding scheme, and threshold value. For general circuits and noise models, these simulations quickly become intractable in the size of the encoded circuit. We introduce methods for approximating a noise process by one which allows for efficient Monte Carlo simulation of properties of encoded circuits. The approximations are as close to the original process as possible without overestimating their ability to preserve quantum information, a key property for obtaining more honest estimates of threshold values. We numerically illustrate the method with various physically relevant noise models.Comment: 6 pages, 1 figur

    Characterization of linear maps on MnM_n whose multiplicity maps have maximal norm, with an application in quantum information

    No full text
    Given a linear map Φ:MnMm\Phi : M_n \rightarrow M_m, its multiplicity maps are defined as the family of linear maps Φidk:MnMkMmMk\Phi \otimes \textrm{id}_{k} : M_n \otimes M_k \rightarrow M_m \otimes M_k, where idk\textrm{id}_{k} denotes the identity on MkM_k. Let 1\|\cdot\|_1 denote the trace-norm on matrices, as well as the induced trace-norm on linear maps of matrices, i.e. Φ1=max{Φ(X)1:XMn,X1=1}\|\Phi\|_1 = \max\{\|\Phi(X)\|_1 : X \in M_n, \|X\|_1 = 1\}. A fact of fundamental importance in both operator algebras and quantum information is that Φidk1\|\Phi \otimes \textrm{id}_{k}\|_1 can grow with kk. In general, the rate of growth is bounded by Φidk1kΦ1\|\Phi \otimes \textrm{id}_{k}\|_1 \leq k \|\Phi\|_1, and matrix transposition is the canonical example of a map achieving this bound. We prove that, up to an equivalence, the transpose is the unique map achieving this bound. The equivalence is given in terms of complete trace-norm isometries, and the proof relies on a particular characterization of complete trace-norm isometries regarding preservation of certain multiplication relations. We use this result to characterize the set of single-shot quantum channel discrimination games satisfying a norm relation that, operationally, implies that the game can be won with certainty using entanglement, but is hard to win without entanglement. Specifically, we show that the well-known example of such a game, involving the Werner-Holevo channels, is essentially the unique game satisfying this norm relation. This constitutes a step towards a characterization of single-shot quantum channel discrimination games with maximal gap between optimal performance of entangled and unentangled strategies
    corecore